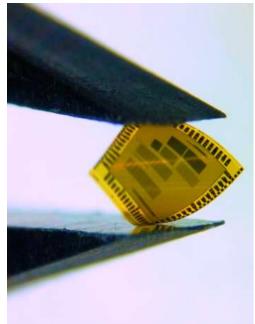


Advanced FHE Bend, Twist Testing and Standardization

Randall Parker July 11, 2023

An Evolution in Packaging


- For decades, the microelectronics industry has been pushing towards ever thinner silicon, enabling smaller package sizes and higher die density using traditional rigid packaging
- More recently, the trend towards thinner devices has shifted to include flexible electronics and packaging components
- Flexible Hybrid Electronic (FHE) systems
 - Incorporate both rigid and flex components in a single package
 - Offer more compact, efficient, and lower cost packaging
 - Conformal form factors invite novel applications
 - Medical implants for rapid diagnostics and drug delivery
 - Wearable electronics and human-machine interfaces
 - Smart labels
 - And many more...

Evolving Electronics Testing

- To enable these new capabilities, flexible packaging is constructed with leading-edge microelectronics and innovative materials
 - Ultra-thin silicon ICs
 - Printed electronics
 - Novel interconnect materials
 - > Devices that are designed to conform, bend, and even stretch during use
- But are these flexible microelectronics reliable?
- Do they perform the same as their rigid counterparts?
- Answering these questions requires an evolution in electronic testing systems to evaluate new realms of package performance
 - New test methods and robotic systems are evolving quickly to evaluate flexible systems
 - Environmental exposure testing is being redefined to evaluate reliability in novel environments
 - Ex. Saline saturation tests for medical implants
 - New expectations are being imposed on traditional electronic packaging materials
 - Ex. Stretchable conductors, non-rigid interconnects, biocompatible adhesives, etc.

Defining the Right Tests

- This new realm of testing requires alternative approaches to evaluating device performance
- As an example, silicon strength is a key indicator of how an IC will survive package assembly and end use
 - Silicon die strength is typically calculated on a theory which assumes a rigid component being pushed to point of fracture (ex. 3-point bend test)
 - However, test results become questionable as die become thinner and less rigid
 - Semi-rigid die (10-100um) can yield incorrect or misleading results due to incorrect calculations (non-rigid beam)
 - For very flexible die (1-10um), die push through the fixture without breaking, resulting in no usable strength data
- Alternative tests for evaluating flexible die need to focus on characteristics like durability of the die, as opposed to simply the strength of the silicon
- Similar challenges exist for most FHE system reliability and material characterizations

FHE Reliability Test Procedures

 American Semiconductor began focusing on FHE reliability test methods in 2016, while under contract with AFRL

Initial ASI FHE Reliability Tests

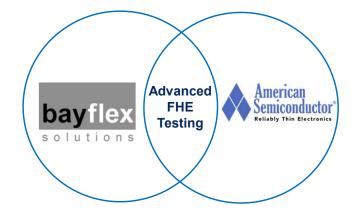
Test	Conditions	ASI Procedure	References
High Temp Life	125°C	ASI TEST008	ISO 10373-1; JESD22-A108
Low Temp Life	-25°C	ASI TEST009	JESD22-A108
ESD	HBM and/or CDM	ASI TEST010	ANSI-ESDA-JEDEC_JS-001 & JS-002
Static Radius of Curvature	Concave/Convex Bend	ASI TEST003	ASTM D522-93a; ISO 10373-1; ISO 7816
Dynamic Radius of Curvature	Concave/Convex Bend	ASI TEST005	ASTM D522-93a; ISO 10373-1; ISO 7816
Axial Torsion	Twist Test	ASI TEST006	ISO 10373-1; ISO 7816
SEM Inspection	Post SoP Conversion	ASI TEST007	MIL-STD-883: M2018
Data Retention	150°C, non-biased	ASI TEST009	JESD22-A117; JESD-A103

This work sponsored in part by the Air Force Research Laboratory AFRL/RX

Since 2016, ASI has continued to develop and advance FHE system characterization methods

New 2020 Tests

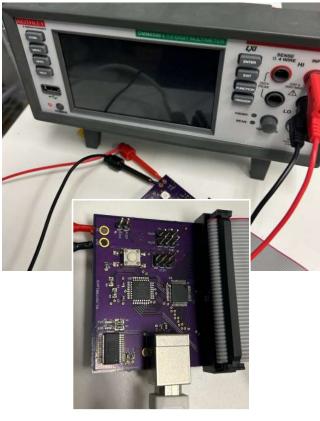
- Temperature-humidity-bias (THB 85/85) (ref. JESD22-A101)
- HAST (ref. JESD22-A110)
- Low Temp (ref. JEDEC22-A119)


In Development

- Thermal cycling
- Others?
- In 2023, ASI entered a JDA with Bayflex/YUASA to combine our experience in FHE reliability with YUASA's advanced tester and robotics design

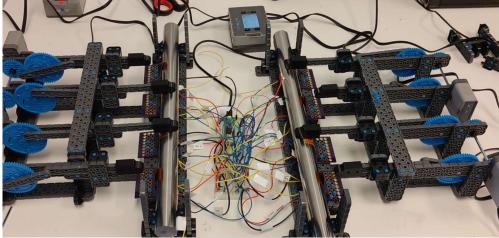
American Semiconductor & Bayflex/YUASA

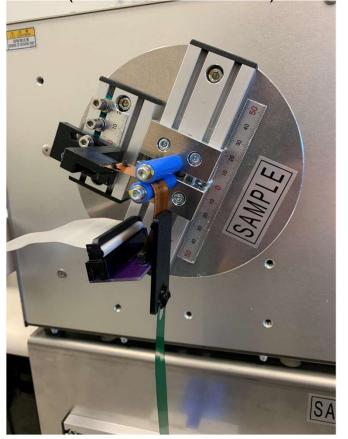
- ASI and Bayflex are collaborating to establish advanced FHE reliability and material characterization test systems
 - Forming methodologies that can be universally adopted across the industry
- Equipment development efforts:
 - Mechanical design: Isolate targeted axis of motion
 - Sample mounting: Universal and repeatable component fixturing
 - Electrical connections:
 - Improved YUASA robot/tester interface expands options for a broader range of test systems
 - Capable of in-situ biasing and data collection
 - ▶ Testing efficiency: Batch processing, quick sample swap, etc.
 - Environmental: Temp cycling, humidity, etc.
- Testing parameters:
 - Flexure direction, amplitude, flex rates, and cycle counts
 - Test coupon design rules to keep focus on critical components



10k Cycle RoC Endurance Comparison

- ASI recently performed a side-by-side evaluation between ASI's home-built system and YUASA radius of curvature (RoC) tester
 - FHE performance was determined by monitoring electrical continuity
 - Resistance of up to 17 circuits measured using digital multimeter
 - Resistance was measured every 10 cycles
 - FHE coupon:
 - ASI's 10um SoP-TM[©] test die flip-chip attached with ACA to FCB
 - Each coupon was flexed up to 10k cycles
 - Bend radii of 15mm, 10mm, and 5mm were evaluated
- Results of the side-by-side evaluation indicate both systems demonstrate
 - Equivalent number of cycles to failure
 - Similar failure modes
 - Similar pin location failures
- ASI has validated YUASA system generates equivalent data and plans to continue system development, including harsh environments


ASI Robot-to-Test Interface



Radius of Curvature (Bend) Endurance Testing

- YUASA system
 - Tidy, compact system
 - Programmable movement with precise and smooth bending motion
 - Sampling trigger to collect incremental in-situ data
 - Quick sample swap
 - ASI has incorporated interconnect capability for simultaneous multichannel data collection
 - Currently not able to simultaneously evaluate multiple coupons
 - ASI RoC Endurance Tester

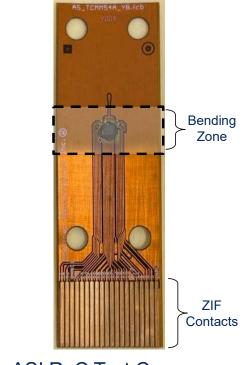
YUASA Endurance Tester (with 5mm RoC Fixture)


© 2023 American Semiconductor, Inc. All rights reserved.

Torsion (or Twist) Endurance Testing

- YUASA system
 - Interchangeable test fixtures to allow different tests to be performed with the same base system
 - Constant tension applied to coupon as sample twists and flexes

ASI Torsion Endurance Tester


YUASA Endurance Tester (with Torsion Fixture)

© 2023 American Semiconductor, Inc. All rights reserved.

Current Efforts in FHE Testing Development

- Test coupon design optimization
 - Layout improvements to prevent flex testing from affecting passive components
 - Improved line/space sizing control
- Continue equipment improvements
 - Data collection advancements
 - Multi-channel robot/tester interface to expand types of data which can be monitored
 - Configurable data collection trigger points (bend angle, cycle count, fixed time, etc.)
 - Automated notifications of test status
 - Fixturing to evaluate multiple coupons
 - Environmental testing options (temperature and humidity chambers)
- Working with SEMI collaborators to establish industry-wide standards for FHE reliability and material characterization

ASI RoC Test Coupon

SEMI FHE Standards Activity

- Efforts are underway in the formation of the North America Chapter of the FHE Standards Technical Committee
 - Basic work groups have already been formed to discuss key FHE standardization efforts
 - More participation from industry and academia is needed
- Anyone who is interested in contributing is encouraged to reach out to the SEMI Standards group and get involved

TOPIC 1: FHE Reliability & Testing

- · Recommended scope/activities
 - · Standards for reliability test conditions
 - · Standards to define adhesion levels/tape testing
 - Standardize Bending test
 - Bending type: Concave, Convex
 - Number of bends
 - Radius of bending
 - · Guide for standard units of test methods and reporting

TOPIC 3: FHE Design

- · Recommended scope/activities
 - · Design rules and PDKs for FHE systems
 - · Standardized file format

Courtesy of SEMI.org 💋 semi

TOPIC 2: FHE Assembly

- Recommended scope/activities
 - Surface Cleaning guidelines for FHE
 - Standardize interconnect between interfaces
 - SMT Standards
 - · System-level specs
 - · Guide for a standard unit of measure for FHE (Metric)
 - Terminology

TOPIC 4: FHE Inks Characterization

- Recommended scope/activities
 - · Ink formulation
 - · Standardized particle size
 - Standard testing for Ink Characterization (Recommendation from Workshop, July 14, 2022)

Thank You

© 2023 American Semiconductor, Inc. All rights reserved. American Semiconductor is a registered trademark of American Semiconductor, Inc. FleX, Silicon-on-Polymer, SOP-TM, FleX-IC, FleX-ADC, FleX-BLE, FleX-NFC, FleX-OpAmp, FleX-SoC, FleX-MCU and FleXform are trademarks of American Semiconductor, Inc.

American Semiconductor 6987 W Targee St Boise, ID 83709 Tel: 208.336.2773 Fax: 208.336.2752 www.americansemi.com