

8th Advanced Technology Workshop on Advanced Packaging for Medical Microelectronics



### The Need for Standards in Flexible & Printed Electronics

February 2, 2023

Doug Hackler. Mike Myers (American Semiconductor) Robert Hopkins (Bayflex Solutions)



## **New Packaging Requires New Test Methods**



- Flexible microelectronic systems are being introduced for wearables, implants, drug delivery, human-machine interfaces, rapid diagnostics and more.
- These novel medical devices rely on leading-edge thin and flexible microelectronics, but are they reliable?
- Bending, Twisting and Stretching are new requirements that are not typical of standard microelectronic systems.
- Development of test methods, systems and reporting of new reliability data for flexible medical electronics is needed to support this new technology





# **FHE Reliability Test Procedures**



- ASI's pioneering work to create FHE test methods started in 2016 under contract with AFRL
- Since 2016, ASI has continued to develop and advance FHE device characterization and reliability

#### Initial FHE Reliability Tests

| Test                        | Conditions          | ASI Procedure | References                           |
|-----------------------------|---------------------|---------------|--------------------------------------|
| High Temp Life              | 125°C               | ASI TEST008   | ISO 10373-1; JESD22-A108             |
| Low Temp Life               | -25°C               | ASI TEST009   | JESD22-A108                          |
| ESD                         | HBM and/or CDM      | ASI TEST010   | ANSI-ESDA-JEDEC_JS-001 & JS-002      |
| Static Radius of Curvature  | Concave/Convex Bend | ASI TEST003   | ASTM D522-93a; ISO 10373-1; ISO 7816 |
| Dynamic Radius of Curvature | Concave/Convex Bend | ASI TEST005   | ASTM D522-93a; ISO 10373-1; ISO 7816 |
| Axial Torsion               | Twist Test          | ASI TEST006   | ISO 10373-1; ISO 7816                |
| SEM Inspection              | Post SoP Conversion | ASI TEST007   | MIL-STD-883: M2018                   |
| Data Retention              | 150°C, non-biased   | ASI TEST009   | JESD22-A117; JESD-A103               |

This work sponsored in part by the Air Force Research Laboratory AFRL/RX

Still Needed

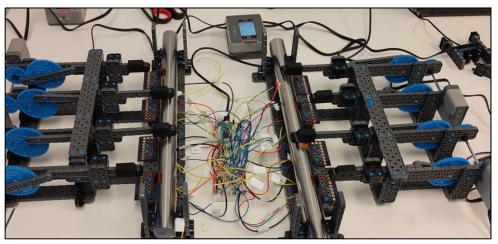
Temp Cycling

Other??



New 2020 Tests

Temperature-humidity-bias (THB 85/85) JESD22-A101 HAST JESD22-A110 Low Temp JEDEC22-A119


© 2023 American Semiconductor, Inc. All rights reserved.



# Current State of FHE Testing

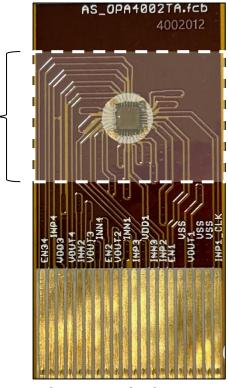


- Test methods for FHE circuits are not commonly defined
- We lack industry standards involving flexible electronics testing methods or metrics
- Most manufacturers have resorted to an array of "home built" testing solutions
  - Test fixture designs
  - Test coupon designs (for data collection during mechanical deformation)
  - Testing conditions (duration, electrical bias, environmental conditions, etc.)
- As a result, results are often difficult to correlate between organizations
  - Adds complexity in conveying performance metrics between development teams or industry partners
  - Difficult to benchmark results with technology adopters and customers



ASI Home Built Radius of Curvature Tester





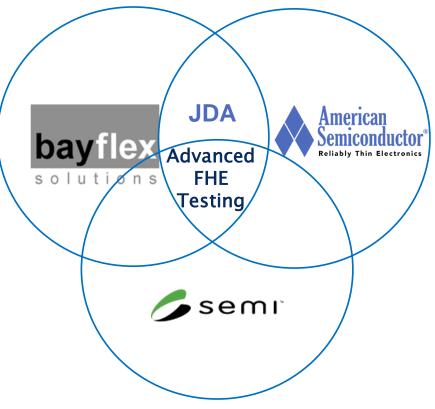



Zone

**Bending** 

- In situations where electrical data needs to be collected during mechanical deformation (bend, torsion, etc.), test coupons are required to incorporate all necessary components for device function
  - Silicon die
  - Rigid or flexible passive elements
  - Connections for bias power or I/O signals
- Development of a viable coupon layout is often challenging
  - FCB material selection
    - Are materials under test representative of final product?
    - Impact of mixed interconnect materials (ACA, solder, etc.)
  - Trace layout symmetry
    - Trace routing can form local areas of non-uniform rigidity that can alter deformation
    - Uniformity is critical in the flex zone (area of deformation)
  - Size and orientation of rigid passive components
    - May need to establish holdout regions to avoid flex zone



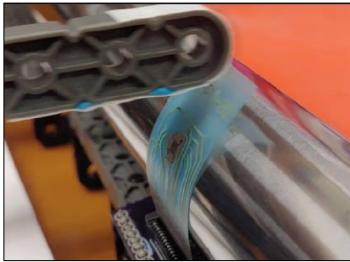

Sample ASI Coupon w/Flex Die



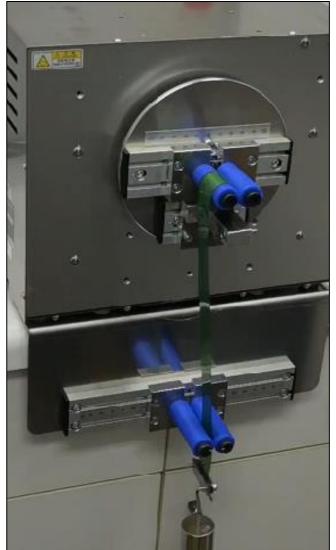
# ASI & Bayflex/Yuasa (JDA) & SEMI collaboration



- American Semiconductor and Bayflex Solutions are working together to develop flex testing equipment and methodologies that can be universally adopted across the industry
  - Joint development of standard test method and apparatus for chip-on-flex RoC and torsion
- Equipment development
  - Universal sample mounting
  - Method for electrical connection (in-situ bias device operation)
  - Mechanical design to isolate targeted axis of motion
  - Compatible mini-environments for temp, humidity, etc.
- Method development
  - Flexure direction and amplitude
  - Test coupon design
  - Targeted cycle counts
  - Acceptable cycle rates
- ASI/Bayflex collaboration with SEMI to create NIST standards





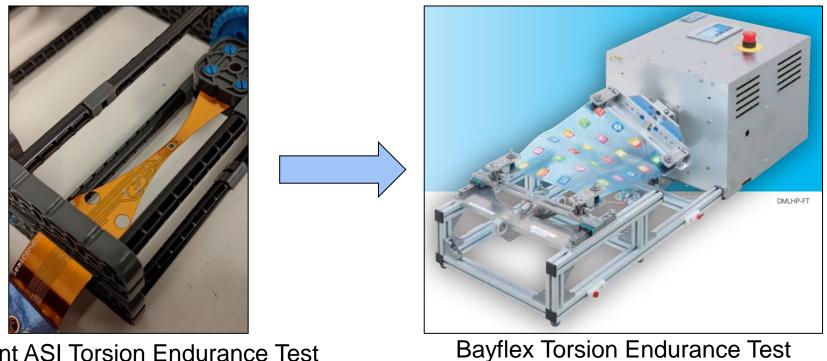


## **Bend/RoC Endurance Test Systems**



- The overall goal is to settle on industry recognized test methods
  - Develop purpose-built test system designs that are accepted industry-wide
    - Standard design can be built internally, or purchased from equipment supplier
  - Establish testing services which are available for low-volume users
- Bend, or Radius of Curvature (RoC), Testing
  - Interchangeable bending radius mandrels
  - Programmable bend angles and speed
  - Single or Dual direction bend configuration
  - Capable of electrical connection for in-situ bias and data collection



Current ASI ROC Endurance Test




#### Bayflex/ASI ROC Endurance Test





- Torsion (Twist) Testing
  - Programmable twist angles and speed
  - Capable of electrical connection for in-situ bias and data collection
  - Importance of test coupon design compatibility with robotics
    - Shape of coupon is critical to achieving 2-axis deformation at the point of interest
    - Test fixture needs to allow coupon to float perpendicular to rotation axis to prevent addition of a stretch component



**Current ASI Torsion Endurance Test** 





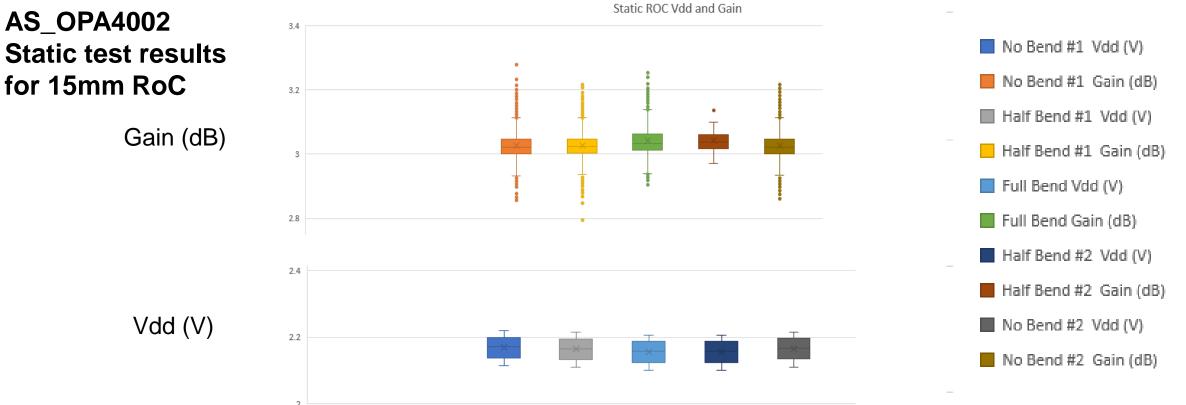
#### Static RoC Testing

- SoP-TM Test Chip, no coupon
- Manual conformance to RoC mandrel

#### **Dynamic Bend Test**

- ASI TEST005 derived from ASTM D522-93a
- Chips mounted on flex coupons of PET or PI
- Robotic cycling at specific (RoC) for bend and release in concave and convex orientation
- Test: 10mm RoC, 10,000 cycles

**Flexible Electronics Test Data** 


| Test                               | Concave | Convex  |                        |
|------------------------------------|---------|---------|------------------------|
| ASI TEST003<br>10mm, 10,000 cycles | PASS    | PASS    | SoP- TM, ACA FC on PET |
| Static RoC 12 mm                   | PASS    | PASS    | SoP-TM only            |
| Static RoC 10 mm                   | PASS    | PASS    | SoP-TM only            |
| Static RoC 8 mm                    | PASS    | PASS    | SoP-TM only            |
| Static RoC 7 mm                    | PASS    | PASS    | SoP-TM only            |
| Static RoC 6 mm                    | PASS    | PASS    | SoP-TM only            |
| Static RoC 5 mm                    | PASS    | PASS    | SoP-TM only            |
| Static RoC 4 mm                    | PASS    | PASS    | SoP-TM only            |
| Static RoC 3 mm                    | PASS    | PASS    | SoP-TM only            |
| Static RoC 2.5 mm                  | PASS    | PASS    | SoP-TM only            |
| Static RoC 2 mm                    | PASS    | PASS    | SoP-TM only            |
| Static RoC 1.5 mm                  | Cracked | Cracked | SoP-TM only            |



## **SoP-TM ETST vs Stress Summary Statistics**

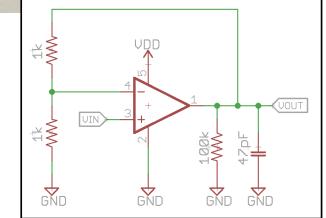
Box Plot





- Static RoC OpAmp test used sample after 10k concave + 10k convex cycles at 10mm RoC
- Vdd difference between no bend and full bend only 0.013V
- Gain difference between no bend and full bend only 0.016dB




# AS\_OPA4002 Dynamic RoC – ASI TEST005

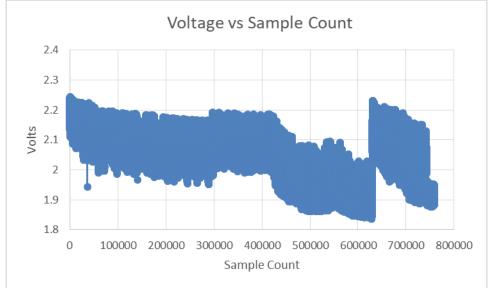


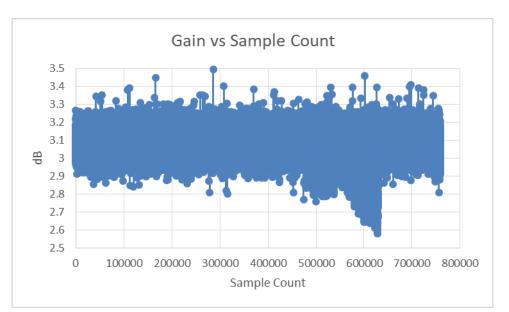
#### **ASI Procedure: TEST005**

- Dynamic bend testing
  - 10mm ROC
  - 10k cycles in each bend direction (concave/convex) for 20k total cycles
- Keysight Infinivision MSOX3024T Mixed Signal Oscilloscope
- Vex Robotics Kit
- 10mm Mandrel
- Teensy 3.4 (MCU)
- Custom Data Collection Software
- 3.3V LM317 Circuit
- OPA4002 configured as a non-inverting ~3dB amplifier









## **Dynamic Concave Bend Test 15-20k**



#### • Vdd

- ► Average: 2.04V
- Minimum: 1.83V
- Maximum: 2.24V
- Std. Dev.: 88.1mV
- Gain
  - Average: 3.06dB
  - Minimum: 2.57dB
  - Maximum: 3.49dB
  - Std. Dev.: 0.0528dB
- Gain continued to hold relatively constant except for times of extreme Voltage drop









- Call to Action:
  - FHE Test Standards need user input
  - Working group formation is in-progress
  - If you are interested in participating, please contact Randy Parker for more information

Randy Parker rparker@americansemi.com



# **Thank You**

© 2023 American Semiconductor, Inc. All rights reserved. American Semiconductor is a registered trademark of American Semiconductor, Inc. FleX, Silicon-on-Polymer, FleX-IC, FleX-ADC, FleX-BLE, FleX-NFC, FleX-OpAmp, FleX-SoC, FleX-MCU and FleXform are trademarks of American Semiconductor, Inc. American Semiconductor 6987 W Targee St Boise, ID 83709 Tel: 208.336.2773 Fax: 208.336.2752 www.americansemi.com