

SEMICONDUCTOR-ON-POLYMER (SoP™) THE EVOLUTION OF THIN IC PACKAGING

October 2019

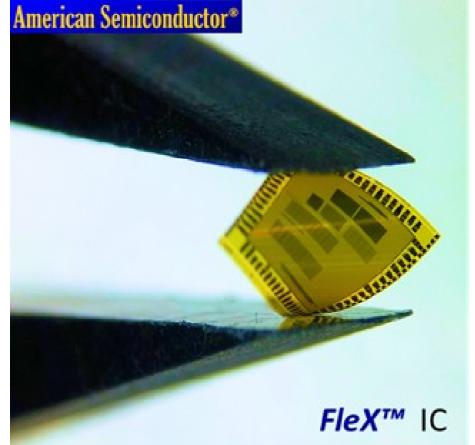
Doug Hackler President & CEO

- 1. Package Thickness Scaling
- 2. Introduction to Semiconductor-on-Polymer (SoP) CSP
- 3. Ultra-thin applications
- 4. Heterogeneous Integration
- 5. Related reliability
- 6. SoP Technology Roadmap
- 7. Summary
- 8. Q & A

Package Thickness Scaling

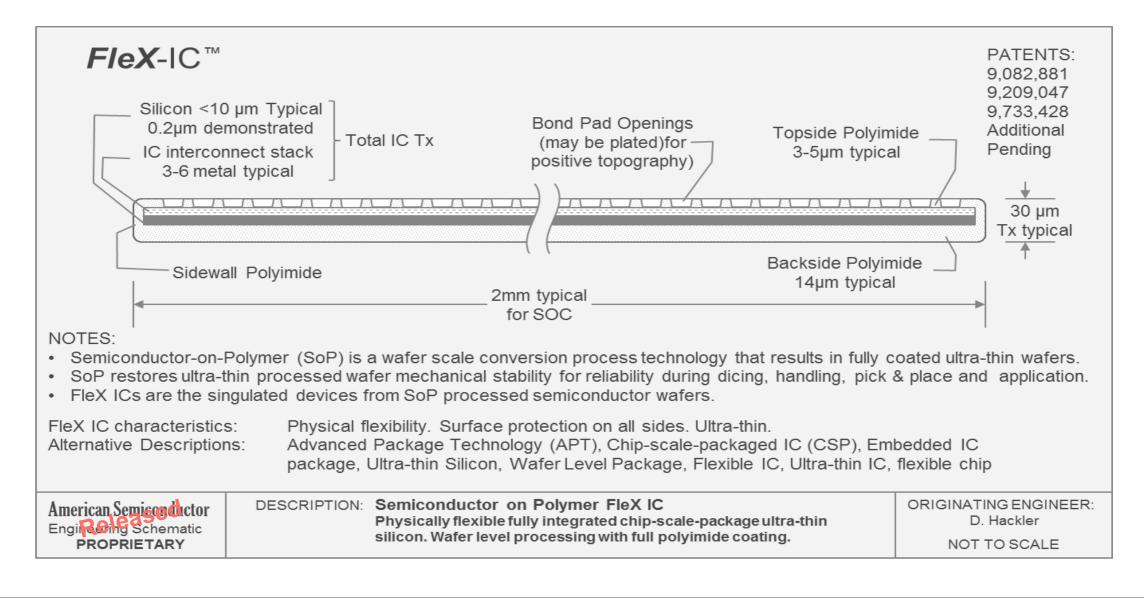
- As systems become thinner, thin die and flexibility become important
- Thin systems bend and mechanically stress electronics
- SoP CSP was developed in response to the need for high reliability ultra-thin ICs
- SoP improves reliability for thin systems

Semicor	American Semiconductor Reliably Thin Electronics		Package Thickness Scaling						
		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	R A R R R R R A R B A R B A R B A R B A R B A R B A R B A R B A R B B A R B B A R B B A R B B A R B B A R B A R	8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					
Attribute		SOIC-16 (D) ¹	SSOP-16 (DB) ¹	TSSOP-16 (PW) ¹	TVSOP-16 (DGV) ¹	QFN-16 (RGY) ¹		FleX–SoP (SoP) ³	
Length, m	m	9.90 ±0.10	6.20 ±0.30	5.00 ±0.10	3.60 ±0.10	4.00 ±0.15	2.51	$2.163 {\pm} 0.01$	
Width. mm	1	6.00 ±0.20	7.80 ±0.40	6.40 ±0.20	6.40 ±0.20	3.50 ±0.15	2.51	2.283±0.01	
Height, Ma	ax. mm					1.00			
		1./5	2.00	1.20	1.20		.075	0.025	
Pitch, mm		1.27	0.65	0.65	0.40	0.50	RDL	<0.1	
Footprint,	mm ²	59.40	48.36	32.00	23.04	14.00	6.3	4.94	
2₩eights3g0	atpack No)0, Bumpe	ed D&, ¹∿≸Ջ ́P Pro	oducÕData She	et (N ₽0 680C)	0.040	Yes oruary 2004 Morto 0.036	No on, Wright ~.0008	Yes (PI) .00023	
SoP area s	ave, %	-SoC Datashee 91.6	et, American Se 89.8	emiconductor, 201 84.6	¹⁸ 78.6	64.7	NA	-	


Thin Device Reliability

Radius of Curvature (RoC) Testing- ICs on PET boards

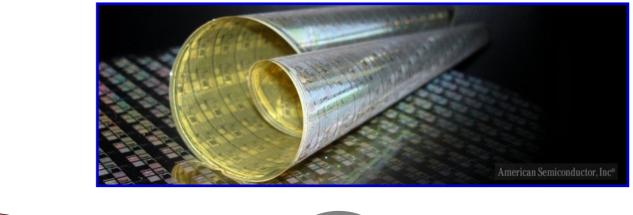
300um Si IC 30mm RoC	Thinning Method	Total Thickness (um)	Die Size (mm)	RoC Fail (mm)	Failure mode
A COCOCICICICICICICICICICICICICICICICICIC	Conventional thinning	300	5.0 X 5.0	30	Delamination
Delamination // // // // // // // // // // // // //			2.5 X 2.5	12	Delamination
		40	2.2 X 2.2	10	Delam & Cracking
		20	2.2 X 2.2	10	Delam & Cracking
Die Crack	SoP WLCSP	28um (Si<5um)	2.5 x 2.5	5	PASS

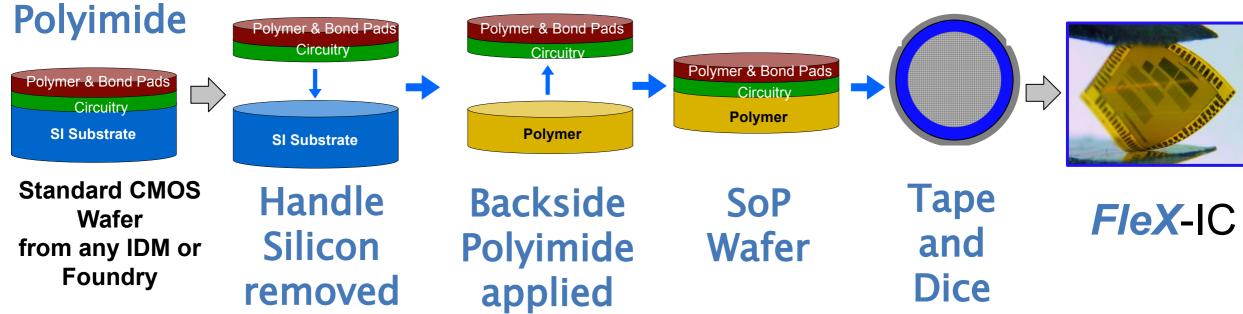

Semiconductor-on-Polymer US Patent 9082881

Introduction – SoP WLCSP

- Semiconductor-on-Polymer (SoP) ultra-thin WLCSP process
- SoP CSP results IC material thickness less than possible with bare die
- SoP CSP improves thin device reliability
- SoP ICs (FleX-ICs) can be physically flexible

Semiconductor-on-Polymer





Frontside

patterned

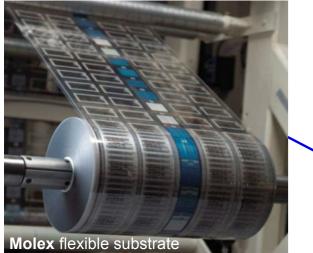
Basic SoP WLCSP Process

SoP polyimide optimization supported in part through Joint Development Agreement with HD MicroSystems

Thin Device Reliability

<u>Test Results – non–mounted ICs</u>

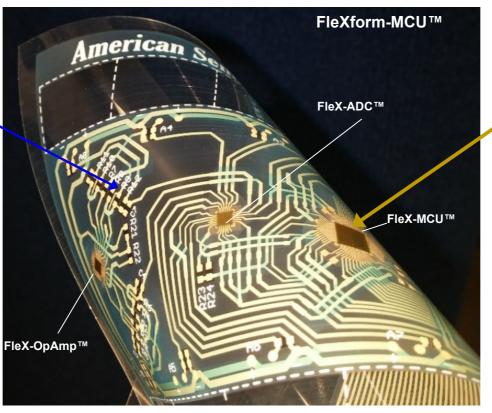
Thinning Method	Total Thickness (um)	Die Size (mm)	RoC Fail (mm)	Failure mode
Thin Die SOC	35 Si	2.16 X 2.28	10	Crack
SoP ADC	<5 Si	2.5 x 2.5	1	PASS (ASI)
SoP SOC	<15 Si	2.16 X 2.28	<5	PASS (Cypress)
SoP NFC	<15 Si	2.51 X 2.51	<5	PASS (NXP)
SoP RFID	<15 Si	1.66 X 2.05	<5	PASS (EM Micro)



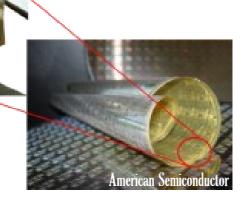
Flexible Hybrid Electronics (FHE)

Hybrid systems provide a flexible product solution that combines the best of silicon based components and flexible organic and printed electronics

Printed Electronics Low Cost, R2R, Large Format



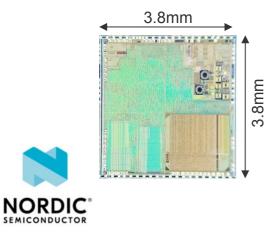
Printed Electronics


- Sensors
- Interconnects
- Substrates
- Displays
- Low Cost, Large Format
- Roll-To-Roll, Screen, Inkjet Print,

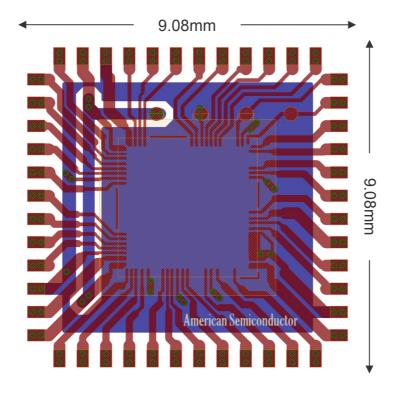
Flexible Hybrid System

Combination of printed materials and high performance components to create a new class – "flexible electronics."

Flexible FleX-ICs High Performance Silicon


FleX-ICs

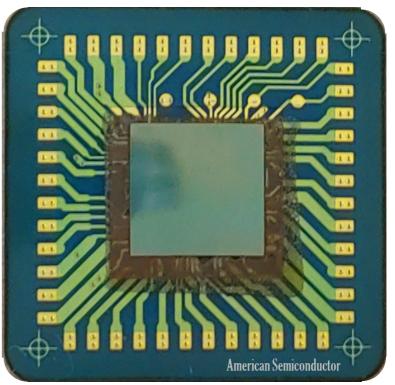
- Sensor Signal Processing
- Data Processing
- Data Storage
- Communications
- Low Cost, High Performance
- FleX is a Semiconductor-on-Polymer (SoP) conversion process that results in chip scale packaging.


AS_NRF51 SoP BLE IC

BLE: 2.4GHz Bluetooth Low Energy, 32-bit ARM Cortex-M0, 256kB Flash, 32kB SRAM, ADC, Temp Sensor Package Thickness: 35um Min. Pad Pitch: 100um

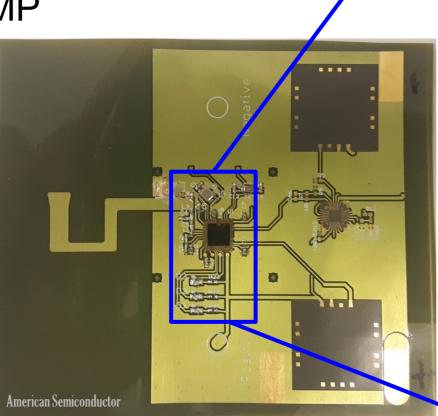
FleX-BLE Inlay

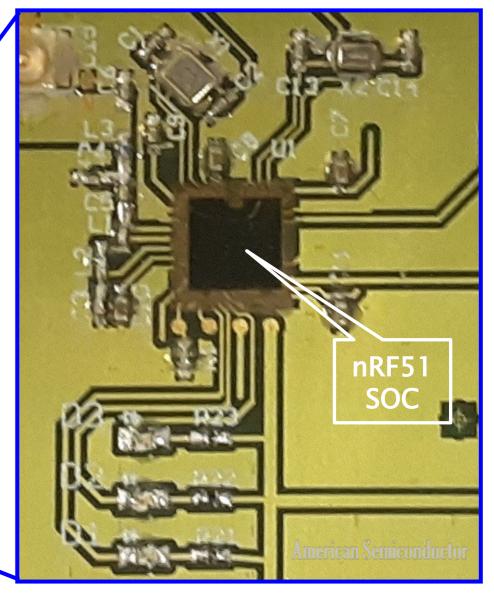
Die: 50um line/100um pitch Periphery: 325um/650um pitch Pyralux™ (~125um)



BLE FHE Assembly

Flipchip SoP DI (Direct Inteconnect) SoP BLE (35um) Flex Inlay (125um) Total Tx = ~160um





Preparing for Heterogeneous Integration

Bluetooth Sensor Module

- Chips on flex
- Flip chip SoP SOC
- Quad OPAMP
- XO
- Caps
- Resistors

FHE Test Procedures

Tact	Conditions	ASI	References		
Test	Conditions	Procedure	REIEICES		
High Temp Life	125°C	ASI TEST008	ISO 10373-1; JESD22-A108		
Low Temp Life	-25°C	ASI TEST009	JESD22-A108		
ESD	HBM and/or CDM	ASI TEST010	ANSI-ESDA-JEDEC_JS-001 & JS- 002		
Static Radius of Curvature	Concave/Convex Bend	ASI TEST003	ASTM D522-93a; ISO 10373-1; ISO 7816		
Dynamic Radius of Curvature	Concave/Convex Bend	ASI TEST005	ASTM D522-93a; ISO 10373-1; ISO 7816		
Axial Torsion	Twist Test	ASI TEST006	ISO 10373-1; ISO 7816		
SEM Inspection	Post SoP Conversion	ASI TEST007	MIL-STD-883: M2018		
Data Retention	150°C, non-bias	ASI TEST009	JESD22-A117; JESD-A103		

FHE Reliability Test Results

Test	Conditions	Results	Notes
High Temp Life	125°C	Pass	168 hours
Low Temp Life	-25°C	Pass	168 hours
ESD	НВМ	Pass	4kV
Static Radius of Curvature	Concave/Convex Bend	Pass	1mm radius
Dynamic Radius of Curvature	Concave/Convex Bend	Pass	10,000 cycles at 5mm radius
Axial Torsion	Bend Test	Pass	90,000 cycles at 180° twist
SEM Inspection	Post SoP Conversion	Pass	4 metal CMOS delayering
Data Retention	150C, non-bias	Pass	500 hours

FHE Reliability Tests in Development

Test	Conditions	References	
Moisture Sensitivity Level	 1) 1) 168hrs 85°C 85% RH 2) 2) 168hrs 85°C 60% RH 3) 3) 192hrs 30°C 60% RH 	JESD22-A113	
Thermal Cycling	TCB: -55°C to +125°C TCC: -65°C to +150°C	JESD22-A104	
Highly Accelerated Stress Test	130°C 85%RH 33.3psi For 96 to 264hr	JESD22-A110E; MIL-STD-883 101C; JESD22-A102	

- A key goal for engaging in this conference and community is to learn the critical issues and best approaches for testing and evaluating SoP
- We hope that you will provide your inputs and opinions

SoP Technology Roadmap

SoP tech roadmap	Auto	Consumer Products	Logistics and Warehouse	ΙοΤ	Healthcare	STATUS	IC Market	
Released Products Low I/O count, <50, 100um L/S typical	FleX-C (POR)	FleX-C (POR)	FleX-C (POR)	FleX-C (POR)	FleX-C (POR)	Released	A large portion of the IC market	
Lower Profile with Sidewall Pl Enable ultra-thin, Reliable, I/O count <100, 80um L/S typical	FleX-C (POR) FleX-TM (R&D)	FleX-C (POR) FleX-TM (R&D)	FleX-C (POR) FleX-TM (R&D)	FleX-C (POR) FleX-TM (R&D)	FleX-C (POR) FleX-TM (R&D)	Near term R&D	volume is low to mid I/O count typical of current and near- term SoP.	
FUTURE SoP Advanced Packaging Highest performance, High I/O count, >100 with dense routing	FleX-ACSP (R&D)	FleX-ACSP (R&D)	FleX-ACSP (R&D)	FleX-ACSP (R&D)	FleX-ACSP (R&D)	Initial and Planned R&D	High I/O count market. Include heterogeneous integration, SoP in 3D and similar.	

Summary and Next Steps

SoP CSP Summary

- SoP CSP provides an ultra-thin package type that utilizes polyimide encapsulation
- SoP CSP has been applied to a wide variety of CMOS ICs
- DCA and DI assembly will be used for thin systems
- Systems are becoming thinner
- Continued thickness scaling is a key roadmap issue
- Thickness scaling will extend to theoretical minimums

Summary and Next Steps

SoP CSP Next Steps

- SoP WLCSP capacity coming on-line
- Ultra-thin IC packaging demonstrations and reliability data
- Reliability leaders are encouraged to test and model new characteristics of mechanically stressed ultra-thin electronics
- Sharing and presenting ultra-thin package and integration data will facilitate faster scaling

Thank You

© 2019 American Semiconductor, Inc. All rights reserved. American Semiconductor is a registered trademark of American Semiconductor, Inc. FleX, Silicon-on-Polymer, FleX-IC, FleX-ADC, FleX-BLE, FleX-NFC, FleX-OpAmp, FleX-SoC, FleX-MCU and FleXform are trademarks of American Semiconductor, Inc. American Semiconductor 6987 W Targee St Boise, ID 83709

Tel: 208.336.2773 Fax: 208.336.2752 www.americansemi.com