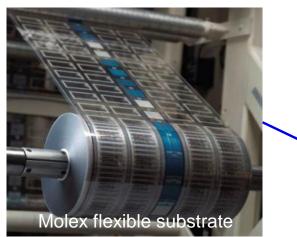
www.americansemi.com

Advances in Flexible Hybrid Electronics Reliability

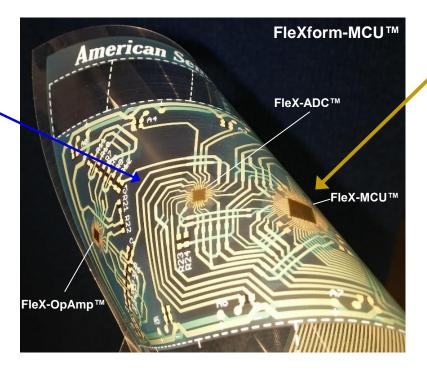
LOPEC Smart & Hybrid Systems Munich 3/29/17



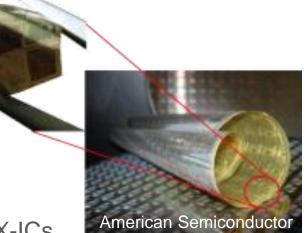
This work sponsored in part by Air Force Research Laboratory, Wright-Patterson AFB, for supporting reliability test development under the Phase II SBIR "Reliability of Flexible Materials, Devices, and Processes for Defense"

What are Flexible Hybrid Electronics?

Printed Electronics Low Cost, R2R, Large Format



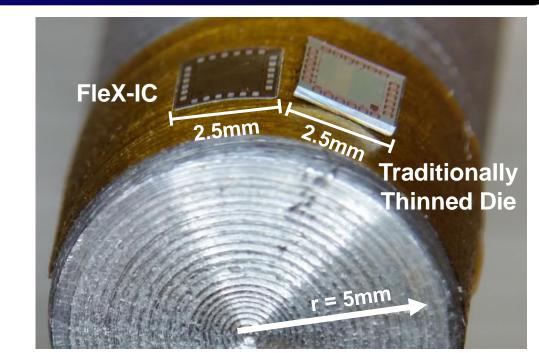
Printed Electronics

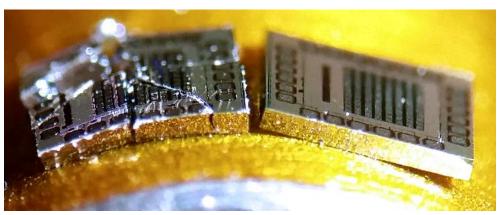

- Sensors
- Interconnects
- Substrates
- Displays
- Low Cost, Large Format
- Roll-To-Roll, Screen, Inkjet Print,

Flexible Hybrid System

"Combination of flexible printed materials and flexible silicon-based ICs to create a new class of flexible electronics."

Flexible FleX-ICs High Performance, High Density

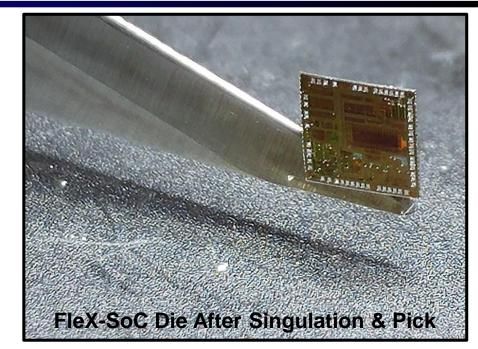


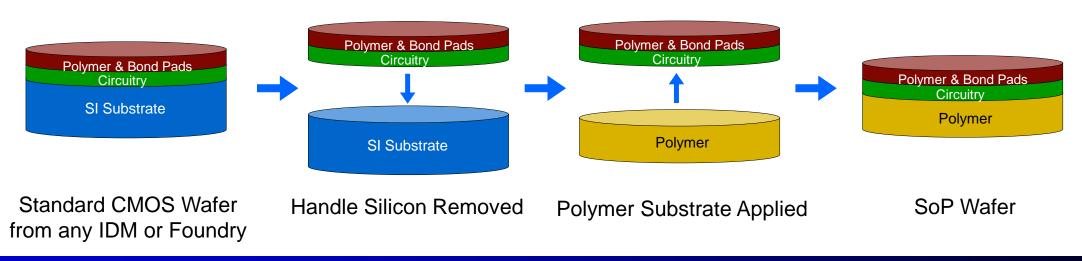

FleX-ICs

- Sensor Signal Processing
- Data Processing
- Data Storage
- Communications
- Low Cost, High Performance
- Compatible with Printed Electronics
- Foundry CMOS + FleX Processing

Why Flexible Hybrid Electronics?

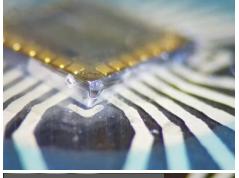
- New Applications
 - Internet of Things (IoT)
 - Wearables
 - Structural
- New Requirements
 - Conformal
 - Dynamically Flexible
 - Ultra thin
 - Ultra light weight
- Improved Reliability
 - No Die Cracking
 - Reduced Breakage of Interconnects

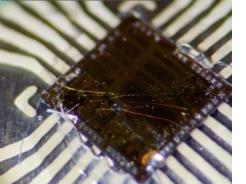



Traditionally Thinned Die at 5mm Radius

FleX[™] Silicon-on-Polymer[™] Wafer Conversion

- First high-volume major semiconductor IC available as a FleX SoP thin device
- 200mm (8") wafers converted to ultra-thin form factor
- 130nm CMOS
- 4 metal layers
- 2.2 mm X 2.3 mm, 2.5mm², 5mm² die




Radius of Curvature (RoC) Testing Per ASI Procedure TEST003

300um Die Delamination

• FHE systems are bent around precision mandrels until mechanical and/or electrical failure

Progressively smaller radii of 40, 30, 25, 20, 15, 12, 10, 8, 7, 6 and 5 mm

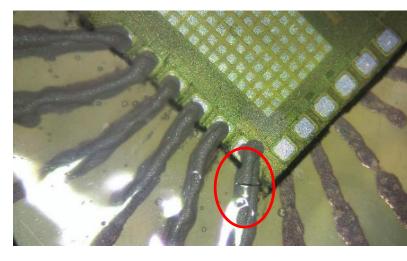
Mechanical Test Results

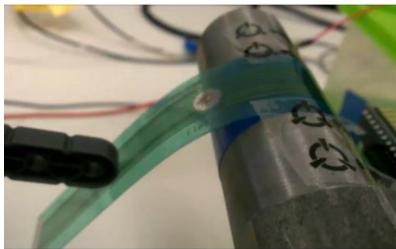
- Mechanical failure observed by microscopic visual inspection
- Failure methods: die delamination from the substrate and die cracking
- Conventional 300um die: RoC is die area dependent
 - Small die may achieve 12mm
 - Large die fail at 30mm
- Conventional 40um die: RoC fails at 12mm for small die
- Conventional 20um die: RoC fails at 12mm for small die
- FleX-IC die: RoC down to 5mm for small die

FleX-IC Radius of Curvature Testing							
Orientation	Radius (mm)	LTOL	Heat Neutral	HTOL			
Convex (Die Out)	5	PASS	PASS	PASS			
	2.5	PASS	PASS	PASS			
	1	PASS	PASS	PASS			
Concave (Die In)	5	PASS	PASS	PASS			
	2.5	PASS	PASS	PASS			
	1	PASS	PASS	PASS			

	Die Thickness (um)	Die Size (mm)	Sample	RoC Failure (mm)	Failure Mode
No Thinning	725	2.5 x 2.5	1	7	Delamination
			2	8	Delamination
			3	12	Delamination
		5 x 5	1	20	Delamination
			2	20	Delamination
			3	20	Delamination
Traditionally Thinned Die	300	2.5 x 2.5	1	12	Delamination
			2	12	Delamination
			3	12	Delamination
		5 x 5	1	30	Delamination
			2	30	Delamination
			3	30	Delamination
	40	2.2 x 2.2	1	10	Materials Crack
			2	7	Delamination
			3	8	Materials Crack
			1*	8	Delamination
			2*	8	Delamination
			3*	12	Materials Crack
	20	2.2 x 2.2	1	5	Materials Crack
			2	12	Materials Crack
			3	10	Materials Crack
			1*	8	Materials Crack
			2*	7	Materials Crack
			3*	10	Materials Crack
S	FleX	2.5 x 2.5	1	5	PASS
FleX ICs			2	5	PASS
			3	5	PASS

FHE Dynamic Reliability Testing

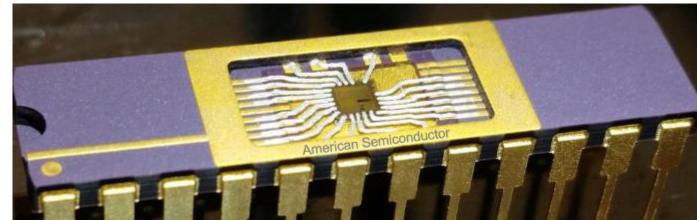

Per ASI Procedure TEST003


Dynamic Radius of Curvature Testing

- Robotics system used to dynamically flex the FHE system around a 15mm radius mandrel
- Continuous electrical testing
- Sample 1 10K cycles convex followed by 13.6K cycles concave without failure
- Sample 2 11K cycles concave followed by 15.8K cycles convex before first failure
 - Failure due to crack in the silver flake conductive adhesive used for interconnect on the VDD line
 - Sample would still function if stress applied to bridge the crack

Dynamic Torsion Testing

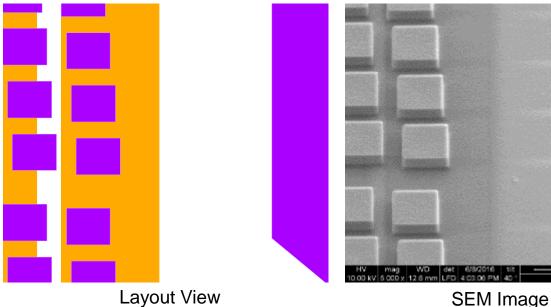
- Robotics used to rotate the sample ±60 or ±90 degrees
- Continuous electrical testing
- Sample 3 10K cycles of ±60 degrees followed by 92K cycles of ±90 degrees before failure
 - Failure mode indicates a crack in the silver flake conductive adhesive


FHE test procedure adapted from ANSI-ESDA-JEDEC_JS-001 and JS-002

<u>TEST 1 – Rigid, Full Thickness Die</u>

- Six AS_ADC1004.pkg packaged ADCs using full thickness die wire bonded to the lead frame
- Pre- and post-stress functional testing
- Pin leakage testing
- RESULT: Passed both 2kV and 4KV human body model (HBM) testing

TEST 2 – Thinned, Flexible Silicon-on-Polymer Die


- Three AS_ADC1004.fxd FleX-ADC die mounted to PET substrates, inserted into packages and connected to the lead frame using conductive epoxy
- FHE system mount designed to accommodate industry standard ESD test equipment and methodologies
- Pre- and post-stress functional testing
- Pin leakage testing
- RESULT: Passed 4KV HBM testing

Industry first: FHE ESD reliability testing

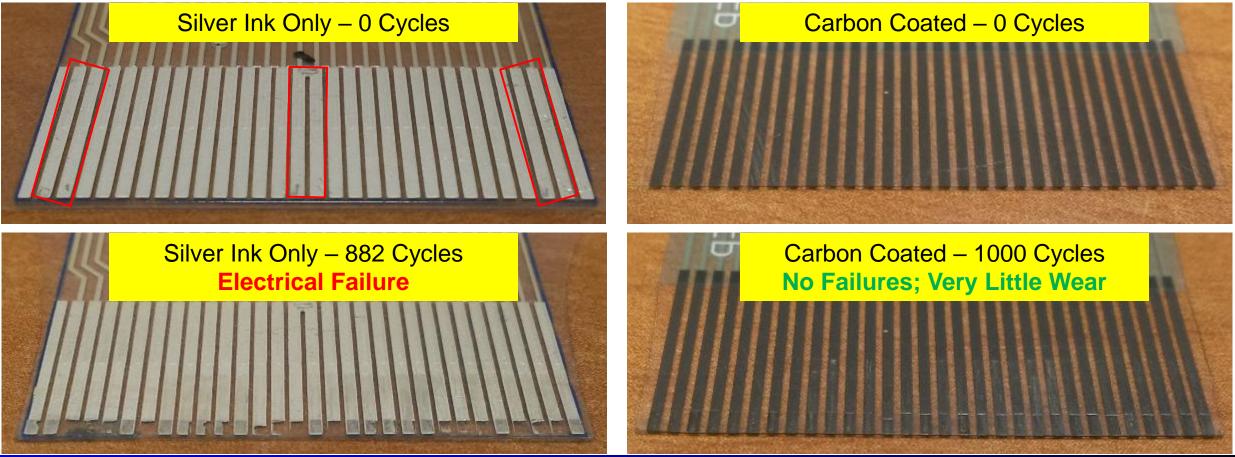
- Scanning Electron Microscope (SEM) inspection based upon MIL-STD-883K, Method 2018.16
- Layer by layer deconstruction analysis of all passivation and all 4 metal layers
- The purpose of this analysis is to look for cracking, delamination, or other visual defects
- Six thin, flexible FleX-ADC die, AS ADC1003.fxd, used for analysis
- **RESULT: PASS. No defects attributed to the FleX SoP process.**
 - Expected result, consistent with functional testing of FleX-ICs before and after FleX conversion

Industry first: FleX-IC SEM reliability testing

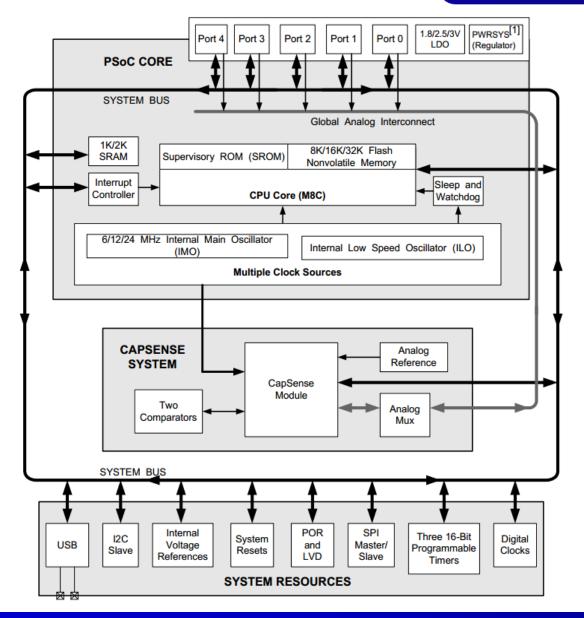
Layout View – M3 & M4

Metal 4 (purple) is deposited on planar interlayer dielectric over Metal 3 (orange)

<u>SEM Image – Metal 4 (Top Metal – 2.8um thick)</u>

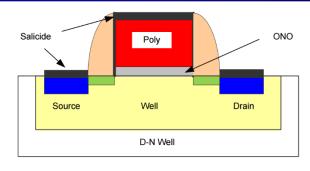

- No delamination, cracking, or visible defects
- Metal 3 is faintly visible through the interlayer dielectric .

Layout View

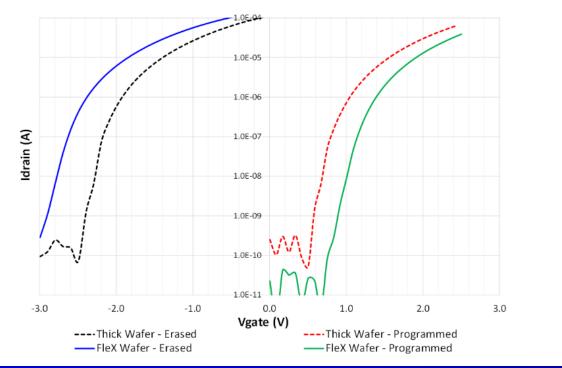

American Semiconductor®

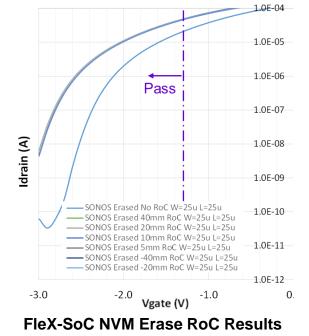
ZIF Reliability Improvements Silver Ink vs Carbon Coated

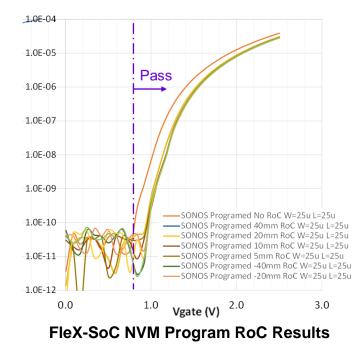
- Repeated insertions of the printed ZIF tail into the Amphenol FCI SFW30S-2STE1LF connector
- 3 pin groups (left, center, right) shorted together for electrical testing during each cycle
- Silver ink only sample exhibited significant wear after only 200 cycles, failure at 882 cycles
- Carbon coated sample had no failures and very little wear after 1000 cycles



Features:


- 8-bit Microcontroller Core
- 1.7 5.5V Operating Range
- Low Power, Including 0.1uA Deep Sleep
- 32KB (256Kb) Flash NVM with 50K program/erase cycles
- 2KB SRAM
- USB 2.0 12Mbs Full-Speed Compliant
- 10-bit Analog-to-Digital Converter
- 2 Analog Comparators
- Low Power Sense Module
- 36 Programmable Input / Output Pins
- 6/12/24MHz Internal Oscillator


Flash Non-Volatile Memory Transistor Testing


- Flash memory using SONOS technology
- Program / erase operations shift transistor operating point
- Known good devices from thick control wafers used as reference

- Devices tested for before and after bending around radius of curvature test mandrels
- Program, erase and read operations all tested
- NVM transistors passed to 5mm RoC in both concave and convex directions

©2017 American Semiconductor, Inc. All rights reserved.

Thank You

Rich Chaney RichChaney@AmericanSemi.com +1 208-336-2773

© 2017 American Semiconductor, Inc. All rights reserved. American Semiconductor is a registered trademark of American Semiconductor, Inc. FleXform, FleXform-ADC, FleX, Silicon-on-Polymer, FleX-ADC, FleX-MCU and FleX-IC are trademarks of American Semiconductor, Inc.

